Making The Case For A (Semi) Formal Specification Of CPython - Episode 288
The CPython implementation has grown and evolved significantly over the past ~25 years. In that time there have been many other projects to create compatible runtimes for your Python code. One of the challenges for these other projects is the lack of a fully documented specification of how and why everything works the way that it does. In the most recent Python language summit Mark Shannon proposed implementing a formal specification for CPython, and in this episode he shares his reasoning for why that would be helpful and what...
Scale Your Data Science Teams With Machine Learning Operations Principles - Episode 289
Building a machine learning model is a process that requires well curated and cleaned data and a lot of experimentation. Doing it repeatably and at scale with a team requires a way to share your discoveries with your teammates. This has led to a new set of operational ML platforms. In this episode Michael Del Balso shares the lessons that he learned from building the platform at Uber for putting machine learning into production. He also explains how the feature store is becoming the core abstraction for data teams...