Latest Episodes

Accidentally Building A Business With Python At Listen Notes - Episode 343

Podcasts are one of the few mediums in the internet era that are still distributed through an open ecosystem. This has a number of benefits, but it also brings the challenge of making it difficult to find the content that you are looking for. Frustrated by the inability to pick and choose single episodes across various shows for his listening Wenbin Fang started the Listen Notes project to fulfill his own needs. He ended up turning that project into his full time business which has grown into the most...

Play Episode

Making Orbital Mechanics More Accessible With Poliastro - Episode 342

Outer space holds a deep fascination for people of all ages, and the key principle in its exploration both near and far is orbital mechanics. Poliastro is a pure Python package for exploring and simulating orbit calculations. In this episode Juan Luis Cano Rodriguez shares the story behind the project, how you can use it to learn more about space travel, and some of the interesting projects that have used it for planning planetary and interplanetary missions.

Play Episode

Declarative Deep Learning From Your Laptop To Production With Ludwig and Horovod - Episode 341

Deep learning frameworks encourage you to focus on the structure of your model ahead of the data that you are working with. Ludwig is a tool that uses a data oriented approach to building and training deep learning models so that you can experiment faster based on the information that you actually have, rather than spending all of our time manipulating features to make them match your inputs. In this episode Travis Addair explains how Ludwig is designed to improve the adoption of deep learning for more companies and...

Play Episode

Build Better Analytics And Models With A Focus On The Data Experience - Episode 340

A lot of time and energy goes into data analysis and machine learning projects to address various goals. Most of the effort is focused on the technical aspects and validating the results, but how much time do you spend on considering the experience of the people who are using the outputs of these projects? In this episode Benn Stancil explores the impact that our technical focus has on the perceived value of our work, and how taking the time to consider what the desired experience will be can lead...

Play Episode

Building Conversational AI to Augment Sales Teams at Structurely - Episode 339

The true power of artificial intelligence is its ability to work collaboratively with humans. Nate Joens co-founded Structurely to create a conversational AI platform that augments human sales teams to help guide potential customers through the initial steps of the funnel. In this episode he discusses the technical and social considerations that need to be combined for a seamless conversational experience and how he and his team are tackling the problem.

Play Episode

Build Composable And Reusable Feature Engineering Pipelines with Feature-Engine - Episode 338

Every machine learning model has to start with feature engineering. This is the process of combining input variables into a more meaningful signal for the problem that you are trying to solve. Many times this process can lead to duplicating code from previous projects, or introducing technical debt in the form of poorly maintained feature pipelines. In order to make the practice more manageable Soledad Galli created the feature-engine library. In this episode she explains how it has helped her and others build reusable transformations that can be applied...

Play Episode

Speed Up Your Python Data Applications By Parallelizing Them With Bodo - Episode 337

The speed of Python is a subject of constant debate, but there is no denying that for compute heavy work it is not the optimal tool. Rather than rewriting your data oriented applications, or having to rearchitect them, the team at Bodo wrote a compiler that will do the optimization for you. In this episode Ehsan Totoni explains how they are able to translate pure Python into massively parallel processes that are optimized for high performance compute systems.

Play Episode

An Exploration Of Financial Exchange Risk Management Strategies - Episode 336

The world of finance has driven the development of many sophisticated techniques for data analysis. In this episode Paul Stafford shares his experiences working in the realm of risk management for financial exchanges. He discusses the types of risk that are involved, the statistical methods that he has found most useful for identifying strategies to mitigate that risk, and the software libraries that have helped him most in his work.

Play Episode

Build Better Machine Learning Models By Understanding Their Decisions With SHAP - Episode 335

Machine learning and deep learning techniques are powerful tools for a large and growing number of applications. Unfortunately, it is difficult or impossible to understand the reasons for the answers that they give to the questions they are asked. In order to help shine some light on what information is being used to provide the outputs to your machine learning models Scott Lundberg created the SHAP project. In this episode he explains how it can be used to provide insight into which features are most impactful when generating an...

Play Episode

Accelerating Drug Discovery Using Machine Learning With TorchDrug - Episode 334

Finding new and effective treatments for disease is a complex and time consuming endeavor, requiring a high degree of domain knowledge and specialized equipment. Combining his expertise in machine learning and graph algorithms with is interest in drug discovery Jian Tang created the TorchDrug project to help reduce the amount of time needed to find new candidate molecules for testing. In this episode he explains how the project is being used by machine learning researchers and biochemists to collaborate on finding effective treatments for real-world diseases.

Play Episode

Join The Mailing List