Latest Episodes

Making Automated Machine Learning More Accessible With EvalML - Episode 329

Building a machine learning model is a process that requires a lot of iteration and trial and error. For certain classes of problem a large portion of the searching and tuning can be automated. This allows data scientists to focus their time on more complex or valuable projects, as well as opening the door for non-specialists to experiment with machine learning. Frustrated with some of the awkward or difficult to use tools for AutoML, Angela Lin and Jeremy Shih helped to create the EvalML framework. In this episode they...

Play Episode

Growing And Supporting The Data Science Community At Anaconda - Episode 328

Data scientists are tasked with answering challenging questions using data that is often messy and incomplete. Anaconda is on a mission to make the lives of data professionals more manageable through creation and maintenance of high quality libraries and frameworks, the distribution of an easy to use Python distribution and package ecosystem, and high quality training material. In this episode Kevin Goldsmith, CTO of Anaconda, discusses the technical and social challenges faced by data scientists, the ways that the Python ecosystem has evolved to help address those difficulties, and...

Play Episode

Network Analysis At The Speed Of C With The Power Of Python Using NetworKit - Episode 327

Analysing networks is a growing area of research in academia and industry. In order to be able to answer questions about large or complex relationships it is necessary to have fast and efficient algorithms that can process the data quickly. In this episode Eugenio Angriman discusses his contributions to the NetworKit library to provide an accessible interface for these algorithms. He shares how he is using NetworKit for his own research, the challenges of working with large and complex networks, and the kinds of questions that can be answered...

Play Episode

Delivering Deep Learning Powered Speech Recognition As A Service For Developers At AssemblyAI - Episode 326

Building a software-as-a-service (SaaS) business is a fairly well understood pattern at this point. When the core of the service is a set of machine learning products it introduces a whole new set of challenges. In this episode Dylan Fox shares his experience building Assembly AI as a reliable and affordable option for automatic speech recognition that caters to a developer audience. He discusses the machine learning development and deployment processes that his team relies on, the scalability and performance considerations that deep learning models introduce, and the user...

Play Episode

Taking Aim At The Legacy Of SQL With The Preql Relational Language - Episode 325

SQL has gone through many cycles of popularity and disfavor. Despite its longevity it is objectively challenging to work with in a collaborative and composable manner. In order to address these shortcomings and build a new interface for your database oriented workloads Erez Shinan created Preql. It is based on the same relational algebra that inspired SQL, but brings in more robust computer science principles to make it more manageable as you scale in complexity. In this episode he shares his motivation for creating the Preql project, how he...

Play Episode

Unleash The Power Of Dataframes At Any Scale With Modin - Episode 324

When you start working on a data project there are always a variety of unknown factors that you have to explore. One of those is the volume of total data that you will eventually need to handle, and the speed and scale at which it will need to be processed. If you optimize for scale too early then it adds a high barrier to entry due to the complexities of distributed systems, but if you invest in a lot of engineering up front then it can be challenging to...

Play Episode

Exploring The SpeechBrain Toolkit For Speech Processing - Episode 323

With the rising availability of computation in everyday devices, there has been a corresponding increase in the appetite for voice as the primary interface. To accomodate this desire it is necessary for us to have high quality libraries for being able to process and generate audio data that can make sense of human speech. To facilitate research and industry applications for speech data Mirco Ravanelli and Peter Plantinga are building SpeechBrain. In this episode they explain how it works under the hood, the projects that they are using it...

Play Episode

Fast And Educational Exploration And Analysis Of Graph Data Structures With graph-tool - Episode 322

If you are interested in a library for working with graph structures that will also help you learn more about the research and theory behind the algorithms then look no further than graph-tool. In this episode Tiago Peixoto shares his work on graph algorithms and networked data and how he has built graph-tool to help in that research. He explains how it is implemented, how it evolved from a simple command line tool to a full-fledged library, and the benefits that he has found from building a personal project...

Play Episode

Lightening The Load For Deep Learning With Sparse Networks Using Neural Magic - Episode 321

Deep learning has largely taken over the research and applications of artificial intelligence, with some truly impressive results. The challenge that it presents is that for reasonable speed and performance it requires specialized hardware, generally in the form of a dedicated GPU (Graphics Processing Unit). This raises the cost of the infrastructure, adds deployment complexity, and drastically increases the energy requirements for training and serving of models. To address these challenges Nir Shavit combined his experiences in multi-core computing and brain science to co-found Neural Magic where he is...

Play Episode

Finding The Core Of Python For A Bright Future With Brett Cannon - Episode 320

Brett Cannon has been a long-time contributor to the Python language and community in many ways. In this episode he shares some of his work and thoughts on modernizing the ecosystem around the language. This includes standards for packaging, discovering the true core of the language, and how to make it possible to target mobile and web platforms.

Play Episode

Join The Mailing List