Add Anomaly Detection To Your Time Series Data With Luminaire - Episode 293

When working with data it's important to understand when it is correct. If there is a time dimension, then it can be difficult to know when variation is normal. Anomaly detection is a useful tool to address these challenges, but a difficult one to do well. In this episode Smit Shah and Sayan Chakraborty share the work they have done on Luminaire to make anomaly detection easier to work with. They explain the complexities inherent to working with time series data, the strategies that they have incorporated into Luminaire, and how they are using it in their data pipelines to identify errors early. If you are working with any kind of time series then it's worth giving Luminaure a...

Play Episode

Building Big Data Pipelines For Audio With Klio - Episode 292

Technologies for building data pipelines have been around for decades, with many mature options for a variety of workloads. However, most of those tools are focused on processing of text based data, both structured and unstructured. For projects that need to manage large numbers of binary and audio files the list of options is much shorter. In this episode Lynn Root shares the work that she and her team at Spotify have done on the Klio project to make that list a bit longer. She discusses the problems that are specific to working with binary data, how the Klio project is architected to allow for scalable and efficient processing of massive numbers of audio files, why it was released...

Play Episode

Open Sourcing The Anvil Full Stack Python Web App Platform - Episode 291

Building a complete web application requires expertise in a wide range of disciplines. As a result it is often the work of a whole team of engineers to get a new project from idea to production. Meredydd Luff and his co-founder built the Anvil platform to make it possible to build full stack applications entirely in Python. In this episode he explains why they released the application server as open source, how you can use it to run your own projects for free, and why developer tooling is the sweet spot for an open source business model. He also shares his vision for how the end-to-end experience of building for the web should look, and some of the innovative...

Play Episode

Pants Has Got Your Python Monorepo Covered - Episode 290

In a software project writing code is just one step of the overall lifecycle. There are many repetitive steps such as linting, running tests, and packaging that need to be run for each project that you maintain. In order to reduce the overhead of these repeat tasks, and to simplify the process of integrating code across multiple systems the use of monorepos has been growing in popularity. The Pants build tool is purpose built for addressing all of the drudgery and for working with monorepos of all sizes. In this episode core maintainers Eric Arellano and Stu Hood explain how the Pants project works, the benefits of automatic dependency inference, and how you can start using it in your...

Play Episode

Scale Your Data Science Teams With Machine Learning Operations Principles - Episode 289

Building a machine learning model is a process that requires well curated and cleaned data and a lot of experimentation. Doing it repeatably and at scale with a team requires a way to share your discoveries with your teammates. This has led to a new set of operational ML platforms. In this episode Michael Del Balso shares the lessons that he learned from building the platform at Uber for putting machine learning into production. He also explains how the feature store is becoming the core abstraction for data teams to collaborate on building machine learning models. If you are struggling to get your models into production, or scale your data science throughput, then this interview is worth a listen.

Play Episode

Join The Mailing List