Teaching Python Machine Learning - Episode 260

Python has become a major player in the machine learning industry, with a variety of widely used frameworks. In addition to the technical resources that make it easy to build powerful models, there is also a sizable library of educational resources to help you get up to speed. Sebastian Raschka's contribution of the Python Machine Learning book has come to be widely regarded as one of the best references for newcomers to the field. In this episode he shares his experiences as an author, his views on why Python is the right language for building machine learning applications, and the insights that he has gained from teaching and contributing to the field.

Play Episode

Build The Next Generation Of Python Web Applications With FastAPI - Episode 259

Python has an embarrasment of riches when it comes to web frameworks, each with their own particular strengths. FastAPI is a new entrant that has been quickly gaining popularity as a performant and easy to use toolchain for building RESTful web services. In this episode Sebastián Ramirez shares the story of the frustrations that led him to create a new framework, how he put in the extra effort to make the developer experience as smooth and painless as possible, and how he embraces extensability with lightweight dependency injection and a straightforward plugin interface. If you are starting a new web application today then FastAPI should be at the top of your list.

Play Episode

Distributed Computing In Python Made Easy With Ray - Episode 258

Distributed computing is a powerful tool for increasing the speed and performance of your applications, but it is also a complex and difficult undertaking. While performing research for his PhD, Robert Nishihara ran up against this reality. Rather than cobbling together another single purpose system, he built what ultimately became Ray to make scaling Python projects to multiple cores and across machines easy. In this episode he explains how Ray allows you to scale your code easily, how to use it in your own projects, and his ambitions to power the next wave of distributed systems at Anyscale. If you are running into scaling limitations in your Python projects for machine learning, scientific computing, or anything else, then give...

Play Episode

Building The Seq Language For Bioinformatics - Episode 257

Bioinformatics is a complex and computationally demanding domain. The intuitive syntax of Python and extensive set of libraries make it a great language for bioinformatics projects, but it is hampered by the need for computational efficiency. Ariya Shajii created the Seq language to bridge the divide between the performance of languages like C and C++ and the ecosystem of Python with built-in support for commonly used genomics algorithms. In this episode he describes his motivation for creating a new language, how it is implemented, and how it is being used in the life sciences. If you are interested in experimenting with sequencing data then give this a listen and then give Seq a try!

Play Episode

An Open Source Toolchain For Natural Language Processing From Explosion AI - Episode 256

The state of the art in natural language processing is a constantly moving target. With the rise of deep learning, previously cutting edge techniques have given way to robust language models. Through it all the team at Explosion AI have built a strong presence with the trifecta of SpaCy, Thinc, and Prodigy to support fast and flexible data labeling to feed deep learning models and performant and scalable text processing. In this episode founder and open source author Matthew Honnibal shares his experience growing a business around cutting edge open source libraries for the machine learning developent process.

Play Episode

Join The Mailing List