Archives: Episodes

Driving Toward A Faster Python Interpreter With Pyston - Episode 298

One of the common complaints about Python is that it is slow. There are languages and runtimes that can execute code faster, but they are not as easy to be productive with, so many people are willing to make that tradeoff. There are some use cases, however, that truly need the benefit of faster execution. To address this problem Kevin Modzelewski helped to create the Pyston intepreter that is focused on speeding up unmodified Python code. In this episode he shares the history of the project, discusses his current efforts to optimize a fork of the CPython interpreter, and his goals for building a business to support the ongoing work to make Python faster for everyone. This is an interesting look at the opportunities that exist in the Python ecosystem and the work being done to address some of them.

Read More

Project Scaffolding That Evolves With Your Software Using Copier - Episode 297

Every software project has a certain amount of boilerplate to handle things like linting rules, test configuration, and packaging. Rather than recreate everything manually every time you start a new project you can use a utility to generate all of the necessary scaffolding from a template. This allows you to extract best practices and team standards into a reusable project that will save you time. The Copier project is one such utility that goes above and beyond the bare minimum by supporting project _evolution_, letting you bring in the changes to the source template after you already have a project that you have dedicated significant work on. In this episode Jairo Llopis explains how the Copier project works under the hood and the advanced capabilities that it provides, including managing the full lifecycle of a project, composing together multiple project templates, and how you can start using it for your own work today.

Read More

How Python's Evolution Impacts Your Fluency With Luciano Ramalho - Episode 296

On its surface Python is a simple language which is what has contributed to its rise in popularity. As you move to intermediate and advanced usage you will find a number of interesting and elegant design elements that will let you build scalable and maintainable systems and design friendly interfaces. Luciano Ramalho is best known as the author of Fluent Python which has quickly become a leading resource for Python developers to increase their facility with the language. In this episode he shares his journey with Python and his perspective on how the recent changes to the interpreter and ecosystem are influencing who is adopting it and how it is being used. Luciano has an interesting perspective on how the feedback loop between the community and the language is driving the curent and future priorities of the features that are added.

Read More

Making Content Management A Smooth Experience With A Headless CMS - Episode 295

Building a web application requires integrating a number of separate concerns into a single experience. One of the common requirements is a content management system to allow product owners and marketers to make the changes needed for them to do their jobs. Rather than spend the time and focus of your developers to build the end to end system a growing trend is to use a headless CMS. In this episode Jake Lumetta shares why he decided to spend his time and energy on building a headless CMS as a service, when and why you might want to use one, and how to integrate it into your applications so that you can focus on the rest of your application.

Read More

Turning Notebooks Into Collaborative And Dynamic Data Applications With Hex - Episode 294

Notebooks have been a useful tool for analytics, exploratory programming, and shareable data science for years, and their popularity is continuing to grow. Despite their widespread use, there are still a number of challenges that inhibit collaboration and use by non-technical stakeholders. Barry McCardel and his team at Hex have built a platform to make collaboration on Jupyter notebooks a first class experience, as well as allowing notebooks to be parameterized and exposing the logic through interactive web applications. In this episode Barry shares his perspective on the state of the notebook ecosystem, why it is such as powerful tool for computing and analytics, and how he has built a successful business around improving the end to end experience of working with notebooks. This was a great conversation about an important piece of the toolkit for every analyst and data scientist.

Read More

Add Anomaly Detection To Your Time Series Data With Luminaire - Episode 293

When working with data it’s important to understand when it is correct. If there is a time dimension, then it can be difficult to know when variation is normal. Anomaly detection is a useful tool to address these challenges, but a difficult one to do well. In this episode Smit Shah and Sayan Chakraborty share the work they have done on Luminaire to make anomaly detection easier to work with. They explain the complexities inherent to working with time series data, the strategies that they have incorporated into Luminaire, and how they are using it in their data pipelines to identify errors early. If you are working with any kind of time series then it’s worth giving Luminaure a look.

Read More

Building Big Data Pipelines For Audio With Klio - Episode 292

Technologies for building data pipelines have been around for decades, with many mature options for a variety of workloads. However, most of those tools are focused on processing of text based data, both structured and unstructured. For projects that need to manage large numbers of binary and audio files the list of options is much shorter. In this episode Lynn Root shares the work that she and her team at Spotify have done on the Klio project to make that list a bit longer. She discusses the problems that are specific to working with binary data, how the Klio project is architected to allow for scalable and efficient processing of massive numbers of audio files, why it was released as open source, and how you can start using it today for your own projects. If you are struggling with ad-hoc infrastructure and a medley of tools that have been cobbled together for analyzing large or numerous binary assets then this is definitely a tool worth testing out.

Read More

Open Sourcing The Anvil Full Stack Python Web App Platform - Episode 291

Building a complete web application requires expertise in a wide range of disciplines. As a result it is often the work of a whole team of engineers to get a new project from idea to production. Meredydd Luff and his co-founder built the Anvil platform to make it possible to build full stack applications entirely in Python. In this episode he explains why they released the application server as open source, how you can use it to run your own projects for free, and why developer tooling is the sweet spot for an open source business model. He also shares his vision for how the end-to-end experience of building for the web should look, and some of the innovative projects and companies that were made possible by the reduced friction that the Anvil platform provides. Give it a listen today to gain some perspective on what it could be like to build a web app.

Read More

Pants Has Got Your Python Monorepo Covered - Episode 290

In a software project writing code is just one step of the overall lifecycle. There are many repetitive steps such as linting, running tests, and packaging that need to be run for each project that you maintain. In order to reduce the overhead of these repeat tasks, and to simplify the process of integrating code across multiple systems the use of monorepos has been growing in popularity. The Pants build tool is purpose built for addressing all of the drudgery and for working with monorepos of all sizes. In this episode core maintainers Eric Arellano and Stu Hood explain how the Pants project works, the benefits of automatic dependency inference, and how you can start using it in your own projects today. They also share useful tips for how to organize your projects, and how the plugin oriented architecture adds flexibility for you to customize Pants to your specific needs.

Read More

Scale Your Data Science Teams With Machine Learning Operations Principles - Episode 289

Building a machine learning model is a process that requires well curated and cleaned data and a lot of experimentation. Doing it repeatably and at scale with a team requires a way to share your discoveries with your teammates. This has led to a new set of operational ML platforms. In this episode Michael Del Balso shares the lessons that he learned from building the platform at Uber for putting machine learning into production. He also explains how the feature store is becoming the core abstraction for data teams to collaborate on building machine learning models. If you are struggling to get your models into production, or scale your data science throughput, then this interview is worth a listen.

Read More