Data Science

From Simple Script To Beautiful Web Application With Streamlit - Episode 238

Building well designed and easy to use web applications requires a significant amount of knowledge and experience across a range of domains. This can act as an impediment to engineers who primarily work in so-called back-end technologies such as machine learning and systems administration. In this episode Adrien Treuille describes how the Streamlit framework empowers anyone who is comfortable writing Python scripts to create beautiful applications to share their work and make it accessible to their colleagues and customers. If you have ever struggled with hacking together a simple web application to make a useful script self-service then give this episode a listen and then go experiment with how Streamlit can level up your work.

Read More

Illustrating The Landscape And Applications Of Deep Learning - Episode 234

Deep learning is a phrase that is used more often as it continues to transform the standard approach to artificial intelligence and machine learning projects. Despite its ubiquity, it is often difficult to get a firm understanding of how it works and how it can be applied to a particular problem. In this episode Jon Krohn, author of Deep Learning Illustrated, shares the general concepts and useful applications of this technique, as well as sharing some of his practical experience in using it for his work. This is definitely a helpful episode for getting a better comprehension of the field of deep learning and when to reach for it in your own projects.

Read More

Exploratory Data Analysis Made Easy At The Command Line - Episode 230

There are countless tools and libraries in Python for data scientists to perform powerful analyses, but they often have a setup cost that acts as a barrier to ad-hoc exploration of data. Visidata is a command line application that eliminates the friction involved with starting the discovery process. In this episode Saul Pwanson explains his motivation for creating it, why a terminal environment is a useful place for this work, and how you can use Visidata for your own work. If you have ever avoided looking at a data set because you couldn’t be bothered with the boilerplate for a Jupyter notebook, then Visidata is the perfect addition to your toolbox.

Read More

Combining Python And SQL To Build A PyData Warehouse - Episode 227

The ecosystem of tools and libraries in Python for data manipulation and analytics is truly impressive, and continues to grow. There are, however, gaps in their utility that can be filled by the capabilities of a data warehouse. In this episode Robert Hodges discusses how the PyData suite of tools can be paired with a data warehouse for an analytics pipeline that is more robust than either can provide on their own. This is a great introduction to what differentiates a data warehouse from a relational database and ways that you can think differently about running your analytical workloads for larger volumes of data.

Read More

Build Your Own Knowledge Graph With Zincbase - Episode 223

Computers are excellent at following detailed instructions, but they have no capacity for understanding the information that they work with. Knowledge graphs are a way to approximate that capability by building connections between elements of data that allow us to discover new connections among disparate information sources that were previously uknown. In our day-to-day work we encounter many instances of knowledge graphs, but building them has long been a difficult endeavor. In order to make this technology more accessible Tom Grek built Zincbase. In this episode he explains his motivations for starting the project, how he uses it in his daily work, and how you can use it to create your own knowledge engine and begin discovering new insights of your own.

Read More

Open Source Automated Machine Learning With MindsDB - Episode 218

Machine learning is growing in popularity and capability, but for a majority of people it is still a black box that we don’t fully understand. The team at MindsDB is working to change this state of affairs by creating an open source tool that is easy to use without a background in data science. By simplifying the training and use of neural networks, and making their logic explainable, they hope to bring AI capabilities to more people and organizations. In this interview George Hosu and Jorge Torres explain how MindsDB is built, how to use it for your own purposes, and how they view the current landscape of AI technologies. This is a great episode for anyone who is interested in experimenting with machine learning and artificial intelligence. Give it a listen and then try MindsDB for yourself.

Read More

Algorithmic Trading In Python Using Open Tools And Open Data - Episode 216

Algorithmic trading is a field that has grown in recent years due to the availability of cheap computing and platforms that grant access to historical financial data. QuantConnect is a business that has focused on community engagement and open data access to grant opportunities for learning and growth to their users. In this episode CEO Jared Broad and senior engineer Alex Catarino explain how they have built an open source engine for testing and running algorithmic trading strategies in multiple languages, the challenges of collecting and serving currrent and historical financial data, and how they provide training and opportunity to their community members. If you are curious about the financial industry and want to try it out for yourself then be sure to listen to this episode and experiment with the QuantConnect platform for free.

Read More

A Data Catalog For Your PyData Projects - Episode 213

One of the biggest pain points when working with data is getting is dealing with the boilerplate code to load it into a usable format. Intake encapsulates all of that and puts it behind a single API. In this episode Martin Durant explains how to use the Intake data catalogs for encapsulating source information, how it simplifies data science workflows, and how to incorporate it into your projects. It is a lightweight way to enable collaboration between data engineers and data scientists in the PyData ecosystem.

Read More

Building A Privacy Preserving Voice Assistant - Episode 211

Being able to control a computer with your voice has rapidly moved from science fiction to science fact. Unfortunately, the majority of platforms that have been made available to consumers are controlled by large organizations with little incentive to respect users’ privacy. The team at Snips are building a platform that runs entirely off-line and on-device so that your information is always in your control. In this episode Adrien Ball explains how the Snips architecture works, the challenges of building a speech recognition and natural language understanding toolchain that works on limited resources, and how they are tackling issues around usability for casual consumers. If you have been interested in taking advantage of personal voice assistants, but wary of using commercially available options, this is definitely worth a listen.

Read More

Probabilistic Modeling In Python (And What That Even Means) - Episode 209

Most programming is deterministic, relying on concrete logic to determine the way that it operates. However, there are problems that require a way to work with uncertainty. PyMC3 is a library designed for building models to predict the likelihood of certain outcomes. In this episode Thomas Wiecki explains the use cases where Bayesian statistics are necessary, how PyMC3 is designed and implemented, and some great examples of how it is being used in real projects.

Read More