Linode

Make Your Code More Readable With The Magic Of Refactoring Using Sourcery - Episode 308

Writing code that is easy to read and understand will have a lasting impact on you and your teammates over the life of a project. Sometimes it can be difficult to identify opportunities for simplifying a block of code, especially if you are early in your journey as a developer. If you work with senior engineers they can help by pointing out ways to refactor your code to be more readable, but they aren’t always available. Brendan Maginnis and Nick Thapen created Sourcery to act as a full time pair programmer sitting in your editor of choice, offering suggestions and automatically refactoring your Python code. In this episode they share their journey of building a tool to automatically find opportunities for refactoring in your code, including how it works under the hood, the types of refactoring that it supports currently, and how you can start using it in your own work today. It always pays to keep your tool box organized and your tools sharp and Sourcery is definitely worth adding to your repertoire.

Read More

Be Data Driven At Any Scale With Superset - Episode 307

Becoming data driven is the stated goal of a large and growing number of organizations. In order to achieve that mission they need a reliable and scalable method of accessing and analyzing the data that they have. While business intelligence solutions have been around for ages, they don’t all work well with the systems that we rely on today and a majority of them are not open source. Superset is a Python powered platform for exploring your data and building rich interactive dashboards that gets the information that your organization needs in front of the people that need it. In this episode Maxime Beauchemin, the creator of Superset, shares how the project got started and why it has become such a widely used and popular option for exploring and sharing data at companies of all sizes. He also explains how it functions, how you can customize it to fit your specific needs, and how to get it up and running in your own environment.

Read More

Practical Advice On Using Python To Power A Business - Episode 306

Python is a language that is used in almost every imaginable context and by people from an amazing range of backgrounds. A lot of the people who use it wouldn’t even call themselves programmers, because that is not the primary focus of their job. In this episode Chris Moffitt shares his experience writing Python as a business user. In order to share his insights and help others who have run up against the limits of Excel he maintains the site Practical Business Python where he publishes articles that help introduce newcomers to Python and explain how to perform tasks such as building reports, automating Excel files, and doing data analysis. This is a great conversation that illustrates how useful it is to learn Python even if you never intend to write software professionally.

Read More

Analyzing The Ecosystem of Python Data Companies With Tony Liu - Episode 305

There are a large and growing number of businesses built by and for data science and machine learning teams that rely on Python. Tony Liu is a venture investor who is following that market closely and betting on its continued success. In this episode he shares his own journey into the role of an investor and discusses what he is most excited about in the industry. He also explains what he looks at when investing in a business and gives advice on what potential founders and early employees of startups should be thinking about when starting on that journey.

Read More

Go From Notebook To Pipeline For Your Data Science Projects With Orchest - Episode 304

Jupyter notebooks are a dominant tool for data scientists, but they lack a number of conveniences for building reusable and maintainable systems. For machine learning projects in particular there is a need for being able to pivot from exploring a particular dataset or problem to integrating that solution into a larger workflow. Rick Lamers and Yannick Perrenet were tired of struggling with one-off solutions when they created the Orchest platform. In this episode they explain how Orchest allows you to turn your notebooks into executable components that are integrated into a graph of execution for running end-to-end machine learning workflows.

Read More

Write Your Python Scripts In A Flow Based Visual Editor With Ryven - Episode 303

When you are writing a script it can become unwieldy to understand how the logic and data are flowing through the program. To make this easier to follow you can use a flow-based approach to building your programs. Leonn Thomm created the Ryven project as an environment for visually constructing a flow-based program. In this episode he shares his inspiration for creating the Ryven project, how it changes the way you think about program design, how Ryven is implemented, and how to get started with it for your own programs.

Read More

CrossHair: Your Automatic Pair Programmer - Episode 302

One of the perennial challenges in software engineering is to reduce the opportunity for bugs to creep into the system. Some of the tools in our arsenal that help in this endeavor include rich type systems, static analysis, writing tests, well defined interfaces, and linting. Phillip Schanely created the CrossHair project in order to add another ally in the fight against broken code. It sits somewhere between type systems, automated test generation, and static analysis. In this episode he explains his motivation for creating it, how he uses it for his own projects, and how to start incorporating it into yours. He also discusses the utility of writing contracts for your functions, and the differences between property based testing and SMT solvers. This is an interesting and informative conversation about some of the more nuanced aspects of how to write well-behaved programs.

Read More

Giving Your Data Science Projects And Teams A Home At DagsHub - Episode 301

Collaborating on software projects is largely a solved problem, with a variety of hosted or self-managed platforms to choose from. For data science projects, collaboration is still an open question. There are a number of projects that aim to bring collaboration to data science, but they are all solving a different aspect of the problem. Dean Pleban and Guy Smoilovsky created DagsHub to give individuals and teams a place to store and version their code, data, and models. In this episode they explain how DagsHub is designed to make it easier to create and track machine learning experiments, and serve as a way to promote collaboration on open source data science projects.

Read More

Exploring Literate Programming For Python Projects With nbdev - Episode 300

Creating well designed software is largely a problem of context and understanding. The majority of programming environments rely on documentation, tests, and code being logically separated despite being contextually linked. In order to weave all of these concerns together there have been many efforts to create a literate programming environment. In this episode Jeremy Howard of fast.ai fame and Hamel Husain of GitHub share the work they have done on nbdev. The explain how it allows you to weave together documentation, code, and tests in the same context so that it is more natural to explore and build understanding when working on a project. It is built on top of the Jupyter environment, allowing you to take advantage of the other great elements of that ecosystem, and it provides a number of excellent out of the box features to reduce the friction in adopting good project hygiene, including continuous integration and well designed documentation sites. Regardless of whether you have been programming for 5 days, 5 years, or 5 decades you should take a look at nbdev to experience a different way of looking at your code.

Read More

Making The Sans I/O Ideal A Reality For The Websockets Library - Episode 299

Working with network protocols is a common need for software projects, particularly in the current age of the internet. As a result, there are a multitude of libraries that provide interfaces to the various protocols. The problem is that implementing a network protocol properly and handling all of the edge cases is hard, and most of the available libraries are bound to a particular I/O paradigm which prevents them from being widely reused. To address this shortcoming there has been a movement towards “sans I/O” implementations that provide the business logic for a given protocol while remaining agnostic to whether you are using async I/O, Twisted, threads, etc. In this episode Aymeric Augustin shares his experience of refactoring his popular websockets library to be I/O agnostic, including the challenges involved in how to design the interfaces, the benefits it provides in simplifying the tests, and the work needed to add back support for async I/O and other runtimes. This is a great conversation about what is involved in making an ideal a reality.

Read More