Linode

Teaching Python Machine Learning - Episode 260

Python has become a major player in the machine learning industry, with a variety of widely used frameworks. In addition to the technical resources that make it easy to build powerful models, there is also a sizable library of educational resources to help you get up to speed. Sebastian Raschka’s contribution of the Python Machine Learning book has come to be widely regarded as one of the best references for newcomers to the field. In this episode he shares his experiences as an author, his views on why Python is the right language for building machine learning applications, and the insights that he has gained from teaching and contributing to the field.

Read More

Build The Next Generation Of Python Web Applications With FastAPI - Episode 259

Python has an embarrasment of riches when it comes to web frameworks, each with their own particular strengths. FastAPI is a new entrant that has been quickly gaining popularity as a performant and easy to use toolchain for building RESTful web services. In this episode Sebastián Ramirez shares the story of the frustrations that led him to create a new framework, how he put in the extra effort to make the developer experience as smooth and painless as possible, and how he embraces extensability with lightweight dependency injection and a straightforward plugin interface. If you are starting a new web application today then FastAPI should be at the top of your list.

Read More

Distributed Computing In Python Made Easy With Ray - Episode 258

Distributed computing is a powerful tool for increasing the speed and performance of your applications, but it is also a complex and difficult undertaking. While performing research for his PhD, Robert Nishihara ran up against this reality. Rather than cobbling together another single purpose system, he built what ultimately became Ray to make scaling Python projects to multiple cores and across machines easy. In this episode he explains how Ray allows you to scale your code easily, how to use it in your own projects, and his ambitions to power the next wave of distributed systems at Anyscale. If you are running into scaling limitations in your Python projects for machine learning, scientific computing, or anything else, then give this a listen and then try it out!

Read More

Building The Seq Language For Bioinformatics - Episode 257

Bioinformatics is a complex and computationally demanding domain. The intuitive syntax of Python and extensive set of libraries make it a great language for bioinformatics projects, but it is hampered by the need for computational efficiency. Ariya Shajii created the Seq language to bridge the divide between the performance of languages like C and C++ and the ecosystem of Python with built-in support for commonly used genomics algorithms. In this episode he describes his motivation for creating a new language, how it is implemented, and how it is being used in the life sciences. If you are interested in experimenting with sequencing data then give this a listen and then give Seq a try!

Read More

An Open Source Toolchain For Natural Language Processing From Explosion AI - Episode 256

The state of the art in natural language processing is a constantly moving target. With the rise of deep learning, previously cutting edge techniques have given way to robust language models. Through it all the team at Explosion AI have built a strong presence with the trifecta of SpaCy, Thinc, and Prodigy to support fast and flexible data labeling to feed deep learning models and performant and scalable text processing. In this episode founder and open source author Matthew Honnibal shares his experience growing a business around cutting edge open source libraries for the machine learning developent process.

Read More

A Flexible Open Source ERP Framework To Run Your Business - Episode 255

Running a successful business requires some method of organizing the information about all of the processes and activity that take place. Tryton is an open source, modular ERP framework that is built for the flexibility needed to fit your organization, rather than requiring you to model your workflows to match the software. In this episode core developers Nicolas Évrard and Cédric Krier are joined by avid user Jonathan Levy to discuss the history of the project, how it is being used, and the myriad ways that you can adapt it to suit your needs. If you are struggling to keep a consistent view of your business and ensure that all of the necessary workflows are being observed then listen now and give Tryton a try.

Read More

Getting A Handle On Portable C Extensions With hpy - Episode 254

One of the driving factors of Python’s success is the ability for developers to integrate with performant languages such as C and C++. The challenge is that the interface for those extensions is specific to the main implementation of the language. This contributes to difficulties in building alternative runtimes that can support important packages such as NumPy. To address this situation a team of developers are working to create the hpy project, a new interface for extension developers that is standardized and provides a uniform target for multiple runtimes. In this episode Antonio Cuni discusses the motivations for creating hpy, how it benefits the whole ecosystem, and ways to contribute to the effort. This is an exciting development that has the potential to unlock a new wave of innovation in the ways that you can run your Python code.

Read More

Open Source Machine Learning On Quantum Computers With Xanadu AI - Episode 253

Quantum computers promise the ability to execute calculations at speeds several orders of magnitude faster than what we are used to. Machine learning and artificial intelligence algorithms require fast computation to churn through complex data sets. At Xanadu AI they are building libraries to bring these two worlds together. In this episode Josh Izaac shares his work on the Strawberry Fields and Penny Lane projects that provide both high and low level interfaces to quantum hardware for machine learning and deep neural networks. If you are itching to get your hands on the coolest combination of technologies, then listen now and then try it out for yourself.

Read More

The Advanced Python Task Scheduler - Episode 252

Most long-running programs have a need for executing periodic tasks. APScheduler is a mature and open source library that provides all of the features that you need in a task scheduler. In this episode the author, Alex Grönholm, explains how it works, why he created it, and how you can use it in your own applications. He also digs into his plans for the next major release and the forces that are shaping the improved feature set. Spare yourself the pain of triggering events at just the right time and let APScheduler do it for you.

Read More

Reducing The Friction Of Embedded Software Development With PlatformIO - Episode 251

Embedded software development is a challenging endeavor due to a fragmented ecosystem of tools. Ivan Kravets experienced the pain of programming for different hardware platforms when embroiled in a home automation project. As a result he built the PlatformIO ecosystem to reduce the friction encountered by engineers working with multiple microcontroller architectures. In this episode he describes the complexities associated with targeting multiple platforms, the tools that PlatformIO offers to simplify the workflow, and how it fits into the development process. If you are feeling the pain of working with different editing environments and build toolchains for various microcontroller vendors then give this interview a listen and then try it out for yourself.

Read More