Machine Learning

The Past, Present, and Future of Deep Learning In PyTorch - Episode 202

Summary

The current buzz in data science and big data is around the promise of deep learning, especially when working with unstructured data. One of the most popular frameworks for building deep learning applications is PyTorch, in large part because of their focus on ease of use. In this episode Adam Paszke explains how he started the project, how it compares to other frameworks in the space such as Tensorflow and CNTK, and how it has evolved to support deploying models into production and on mobile devices.

Announcements

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app or want to try a project you hear about on the show, you’ll need somewhere to deploy it, so take a look at our friends over at Linode. With 200 Gbit/s private networking, scalable shared block storage, node balancers, and a 40 Gbit/s public network, all controlled by a brand new API you’ve got everything you need to scale up. And for your tasks that need fast computation, such as training machine learning models, they just launched dedicated CPU instances. Go to pythonpodcast.com/linode to get a $20 credit and launch a new server in under a minute. And don’t forget to thank them for their continued support of this show!
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes and tell your friends and co-workers
  • Join the community in the new Zulip chat workspace at pythonpodcast.com/chat
  • Check out the Practical AI podcast from our friends at Changelog Media to learn and stay up to date with what’s happening in AI
  • You listen to this show to learn and stay up to date with the ways that Python is being used, including the latest in machine learning and data analysis. For even more opportunities to meet, listen, and learn from your peers you don’t want to miss out on this year’s conference season. We have partnered with O’Reilly Media for the Strata conference in San Francisco on March 25th and the Artificial Intelligence conference in NYC on April 15th. Here in Boston, starting on May 17th, you still have time to grab a ticket to the Enterprise Data World, and from April 30th to May 3rd is the Open Data Science Conference. Go to pythonpodcast.com/conferences to learn more and take advantage of our partner discounts when you register.
  • Your host as usual is Tobias Macey and today I’m interviewing Adam Paszke about PyTorch, an open source deep learning platform that provides a seamless path from research prototyping to production deployment

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you start by explaining what deep learning is and how it relates to machine learning and artificial intelligence?
  • Can you explain what PyTorch is and your motivation for creating it?
    • Why was it important for PyTorch to be open source?
  • There is currently a large and growing ecosystem of deep learning tools built for Python. Can you describe the current landscape and how PyTorch fits in relation to projects such as Tensorflow and CNTK?
    • What are some of the ways that PyTorch is different from Tensorflow and CNTK, and what are the areas where these frameworks are converging?
  • How much knowledge of machine learning, artificial intelligence, or neural network topologies are necessary to make use of PyTorch?
    • What are some of the foundational topics that are most useful to know when getting started with PyTorch?
  • Can you describe how PyTorch is architected/implemented and how it has evolved since you first began working on it?
    • You recently reached the 1.0 milestone. Can you talk about the journey to that point and the goals that you set for the release?
  • What are some of the other components of the Python ecosystem that are most commonly incorporated into projects based on PyTorch?
  • What are some of the most novel, interesting, or unexpected uses of PyTorch that you have seen?
  • What are some cases where PyTorch is the wrong choice for a problem?
  • What is the process for incorporating these new techniques and discoveries into the PyTorch framework?
    • What are the areas of active research that you are most excited about?
  • What are some of the most interesting/useful/unexpected/challenging lessons that you have learned in the process of building and maintaining PyTorch?
  • What do you have planned for the future of PyTorch?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Polyglot: Multi-Lingual Natural Language Processing with Rami Al-Rfou - Episode 190

Summary

Using computers to analyze text can produce useful and inspirational insights. However, when working with multiple languages the capabilities of existing models are severely limited. In order to help overcome this limitation Rami Al-Rfou built Polyglot. In this episode he explains his motivation for creating a natural language processing library with support for a vast array of languages, how it works, and how you can start using it for your own projects. He also discusses current research on multi-lingual text analytics, how he plans to improve Polyglot in the future, and how it fits in the Python ecosystem.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app or want to try a project you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200 Gbit/s private networking, scalable shared block storage, node balancers, and a 40 Gbit/s public network, all controlled by a brand new API you’ve got everything you need to scale up. Go to pythonpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • And to keep track of how your team is progressing on building new features and squashing bugs, you need a project management system designed by software engineers, for software engineers. Clubhouse lets you craft a workflow that fits your style, including per-team tasks, cross-project epics, a large suite of pre-built integrations, and a simple API for crafting your own. Podcast.__init__ listeners get 2 months free on any plan by going to pythonpodcast.com/clubhouse today and signing up for a trial.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Join the community in the new Zulip chat workspace at pythonpodcast.com/chat
  • Your host as usual is Tobias Macey and today I’m interviewing Rami Al-Rfou about Polyglot, a natural language pipeline with support for an impressive amount of languages

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you start by describing what Polyglot is and your reasons for starting the project?
  • What are the types of use cases that Polyglot enables which would be impractical with something such as NLTK or SpaCy?
  • A majority of NLP libraries have a limited set of languages that they support. What is involved in adding support for a given language to a natural language tool?
    • What is involved in adding a new language to Polyglot?
    • Which families of languages are the most challenging to support?
  • What types of operations are supported and how consistently are they supported across languages?
  • How is Polyglot implemented?
  • Is there any capacity for integrating Polyglot with other tools such as SpaCy or Gensim?
  • How much domain knowledge is required to be able to effectively use Polyglot within an application?
  • What are some of the most interesting or unique uses of Polyglot that you have seen?
  • What have been some of the most complex or challenging aspects of building Polyglot?
  • What do you have planned for the future of Polyglot?
  • What are some areas of NLP research that you are excited for?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Of Checklists, Ethics, and Data with Emily Miller and Peter Bull - Episode 184

Summary

As data science becomes more widespread and has a bigger impact on the lives of people, it is important that those projects and products are built with a conscious consideration of ethics. Keeping ethical principles in mind throughout the lifecycle of a data project helps to reduce the overall effort of preventing negative outcomes from the use of the final product. Emily Miller and Peter Bull of Driven Data have created Deon to improve the communication and conversation around ethics among and between data teams. It is a Python project that generates a checklist of common concerns for data oriented projects at the various stages of the lifecycle where they should be considered. In this episode they discuss their motivation for creating the project, the challenges and benefits of maintaining such a checklist, and how you can start using it today.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to scale up. Go to podcastinit.com/linode to get a $20 credit and launch a new server in under a minute.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Join the community in the new Zulip chat workspace at podcastinit.com/chat
  • Your host as usual is Tobias Macey and today I’m interviewing Emily Miller and Peter Bull about Deon, an ethics checklist for data projects

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you start by describing what Deon is and your motivation for creating it?
  • Why a checklist, specifically? What’s the advantage of this over an oath, for example?
  • What is unique to data science in terms of the ethical concerns, as compared to traditional software engineering?
  • What is the typical workflow for a team that is using Deon in their projects?
  • Deon ships with a default checklist but allows for customization. What are some common addendums that you have seen?
    • Have you received pushback on any of the default items?
  • How does Deon simplify communication around ethics across team boundaries?
  • What are some of the most often overlooked items?
  • What are some of the most difficult ethical concerns to comply with for a typical data science project?
  • How has Deon helped you at Driven Data?
  • What are the customer facing impacts of embedding a discussion of ethics in the product development process?
  • Some of the items on the default checklist coincide with regulatory requirements. Are there any cases where regulation is in conflict with an ethical concern that you would like to see practiced?
  • What are your hopes for the future of the Deon project?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Understanding Machine Learning Through Visualizations with Benjamin Bengfort and Rebecca Bilbro - Episode 166

Summary

Machine learning models are often inscrutable and it can be difficult to know whether you are making progress. To improve feedback and speed up iteration cycles Benjamin Bengfort and Rebecca Bilbro built Yellowbrick to easily generate visualizations of model performance. In this episode they explain how to use Yellowbrick in the process of building a machine learning project, how it aids in understanding how different parameters impact the outcome, and the improved understanding among teammates that it creates. They also explain how it integrates with the scikit-learn API, the difficulty of producing effective visualizations, and future plans for improvement and new features.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to scale up. Go to podcastinit.com/linode to get a $20 credit and launch a new server in under a minute.
  • To get worry-free releases download GoCD, the open source continous delivery server built by Thoughworks. You can use their pipeline modeling and value stream map to build, control and monitor every step from commit to deployment in one place. And with their new Kubernetes integration it’s even easier to deploy and scale your build agents. Go to podcastinit.com/gocd to learn more about their professional support services and enterprise add-ons.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Rebecca Bilbro and Benjamin Bengfort about Yellowbrick, a scikit extension to use visualizations for assisting with model selection in your data science projects.

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you describe the use case for Yellowbrick and how the project got started?
  • What is involved in visualizing scikit-learn models?
    • What kinds of information do the visualizations convey?
    • How do they aid in understanding what is happening in the models?
  • How much direction does yellowbrick provide in terms of knowing which visualizations will be helpful in various circumstances?
  • What does the workflow look like for someone using Yellowbrick while iterating on a data science project?
  • What are some of the common points of confusion that your students encounter when learning data science and how has yellowbrick assisted in achieving understanding?
  • How is Yellowbrick iplemented and how has the design changed over the lifetime of the project?
  • What would be required to integrate with other visualization libraries and what benefits (if any) might that provide?
    • What about other ML frameworks?
  • What are some of the most challenging or unexpected aspects of building and maintaining Yellowbrick?
  • What are the limitations or edge cases for yellowbrick?
  • What do you have planned for the future of yellowbrick?
  • Beyond visualization, what are some of the other areas that you would like to see innovation in how data science is taught and/or conducted to make it more accessible?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Asking Questions From Data Using Active Learning with Tivadar Danka - Episode 162

Summary

One of the challenges of machine learning is obtaining large enough volumes of well labelled data. An approach to mitigate the effort required for labelling data sets is active learning, in which outliers are identified and labelled by domain experts. In this episode Tivadar Danka describes how he built modAL to bring active learning to bioinformatics. He is using it for doing human in the loop training of models to detect cell phenotypes with massive unlabelled datasets. He explains how the library works, how he designed it to be modular for a broad set of use cases, and how you can use it for training models of your own.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to scale up. Go to podcastinit.com/linode to get a $20 credit and launch a new server in under a minute.
  • To get worry-free releases download GoCD, the open source continous delivery server built by Thoughworks. You can use their pipeline modeling and value stream map to build, control and monitor every step from commit to deployment in one place. And with their new Kubernetes integration it’s even easier to deploy and scale your build agents. Go to podcastinit.com/gocd to learn more about their professional support services and enterprise add-ons.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Tivadar Danka about modAL, a modular active learning framework for Python3

Interview

  • Introductions
  • How did you get introduced to Python?
  • What is active learning?
    • How does it differ from other approaches to machine learning?
  • What is modAL and what was your motivation for starting the project?
  • For someone who is using modAL, what does a typical workflow look like to train their models?
  • How do you avoid oversampling and causing the human in the loop to become overwhelmed with labeling requirements?
  • What are the most challenging aspects of building and using modAL?
  • What do you have planned for the future of modAL?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Scaling Deep Learning Using Polyaxon with Mourad Mourafiq - Episode 158

Summary

With libraries such as Tensorflow, PyTorch, scikit-learn, and MXNet being released it is easier than ever to start a deep learning project. Unfortunately, it is still difficult to manage scaling and reproduction of training for these projects. Mourad Mourafiq built Polyaxon on top of Kubernetes to address this shortcoming. In this episode he shares his reasons for starting the project, how it works, and how you can start using it today.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 200Gbit network, all controlled by a brand new API you’ve got everything you need to scale up. Go to podcastinit.com/linode to get a $20 credit and launch a new server in under a minute.
  • Finding a bug in production is never a fun experience, especially when your users find it first. Airbrake error monitoring ensures that you will always be the first to know so you can deploy a fix before anyone is impacted. With open source agents for Python 2 and 3 it’s easy to get started, and the automatic aggregations, contextual information, and deployment tracking ensure that you don’t waste time pinpointing what went wrong. Go to podcastinit.com/airbrake today to sign up and get your first 30 days free, and 50% off 3 months of the Startup plan.
  • To get worry-free releases download GoCD, the open source continous delivery server built by Thoughworks. You can use their pipeline modeling and value stream map to build, control and monitor every step from commit to deployment in one place. And with their new Kubernetes integration it’s even easier to deploy and scale your build agents. Go to podcastinit.com/gocd to learn more about their professional support services and enterprise add-ons.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • Your host as usual is Tobias Macey and today I’m interviewing Mourad Mourafiq about Polyaxon, a platform for building, training and monitoring large scale deep learning applications.

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you give a quick overview of what Polyaxon is and your motivation for creating it?
  • What is a typical workflow for building and testing a deep learning application?
  • How is Polyaxon implemented?
    • How has the internal architecture evolved since you first started working on it?
    • What is unique to deep learning workloads that makes it necessary to have a dedicated tool for deploying them?
    • What does Polyaxon add on top of the existing functionality in Kubernetes?
  • It can be difficult to build a docker container that holds all of the necessary components for a complex application. What are some tips or best practices for creating containers to be used with Polyaxon?
  • What are the relative tradeoffs of the various deep learning frameworks that you support?
  • For someone who is getting started with Polyaxon what does the workflow look like?
    • What is involved in migrating existing projects to run on Polyaxon?
  • What have been the most challenging aspects of building Polyaxon?
  • What are your plans for the future of Polyaxon?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Electricity Map: Real Time Visibility of Power Generation with Olivier Corradi - Episode 157

Summary

One of the biggest issues facing us is the availability of sustainable energy sources. As individuals and energy consumers it is often difficult to understand how we can make informed choices about energy use to reduce our impact on the environment. Electricity Map is a project that provides up to date and historical information about the balance of how the energy we are using is being produced. In this episode Olivier Corradi discusses his motivation for creating Electricity Map, how it is built, and his goals for the project and his other work at Tomorrow Co.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 200Gbit network, all controlled by a brand new API you’ve got everything you need to scale up. Go to podcastinit.com/linode to get a $20 credit and launch a new server in under a minute.
  • Finding a bug in production is never a fun experience, especially when your users find it first. Airbrake error monitoring ensures that you will always be the first to know so you can deploy a fix before anyone is impacted. With open source agents for Python 2 and 3 it’s easy to get started, and the automatic aggregations, contextual information, and deployment tracking ensure that you don’t waste time pinpointing what went wrong. Go to podcastinit.com/airbrake today to sign up and get your first 30 days free, and 50% off 3 months of the Startup plan.
  • To get worry-free releases download GoCD, the open source continous delivery server built by Thoughworks. You can use their pipeline modeling and value stream map to build, control and monitor every step from commit to deployment in one place. And with their new Kubernetes integration it’s even easier to deploy and scale your build agents. Go to podcastinit.com/gocd to learn more about their professional support services and enterprise add-ons.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • Your host as usual is Tobias Macey and today I’m interviewing Olivier Corradi about Electricity Map and using Python to analyze data of global power generation

Interview

  • Introductions
  • How did you get introduced to Python?
  • What was your motivation for creating Electricity Map?
    • How can an average person use or benefit from the information that is available in the map?
  • What sources are you using to gather the information about how electricity is generated and distributed in various geographic regions?
    • Is there any standard format in which this data is produced?
    • What are the biggest difficulties associated with collecting and consuming this data?
    • How much confidence do you have in the accuracy of the data sources?
    • Is there any penalty for misrepresenting the fuel consumption or waste generation for a given plant?
  • Can you describe the architecture of the system and how it has evolved?
  • What are some of the most interesting uses of the data in your database and API that you are aware of?
    • How do you measure the impact or effectiveness of the information that you provide through the different interfaces to the data that you have aggregated?
  • How have you built a community around the project?
    • How has the community helped in building and growing Electricity Map?
  • What are some of the most unexpected things that you have learned in the process of building Electricity Map?
  • What are your plans for the future of Electricity Map?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Luminoth: AI Powered Computer Vision for Python with Joaquin Alori - Episode 154

Summary

Making computers identify and understand what they are looking at in digital images is an ongoing challenge. Recent years have seen notable increases in the accuracy and speed of object detection due to deep learning and new applications of neural networks. In order to make it easier for developers to take advantage of these techniques Tryo Labs built Luminoth. In this interview Joaquín Alori explains how how Luminoth works, how it can be used in your projects, and how it compares to API oriented services for computer vision.

Introduction

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • When you’re ready to launch your next app you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to scale up. Go to podcastinit.com/linode to get a $20 credit and launch a new server in under a minute.
  • For complete visibility into your application stack, deployment tracking, and powerful alerting, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix bugs in no time. Go to podcastinit.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt.
  • To get worry-free releases download GoCD, the open source continous delivery server built by Thoughworks. You can use their pipeline modeling and value stream map to build, control and monitor every step from commit to deployment in one place. Go to podcastinit.com/gocd to learn more about their professional support services and enterprise add-ons.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • Your host as usual is Tobias Macey and today I’m interviewing Joaquín Alori about Luminoth, a deep learning toolkit for computer vision in Python

Interview

  • Introductions
  • How did you get introduced to Python?
  • What is Luminoth and what was your motivation for creating it?
  • Computer vision has been a focus of AI research for decades. How do current approaches with deep learning compare to previous generations of tooling?
  • What are some of the most difficult problems in visual processing that still need to be solved?
  • What are the limitations of Luminoth for building a computer vision application and how do they differ from the capabilities of something built with a prior generation of tooling such as OpenCV?
  • For someone who is interested in using Luminoth in their project what is the current workflow?
  • How do the capabilities of Luminoth compare with some of the various service based options such as Rekognition for Amazon or the Cloud Vision API from Google?
    • What are some of the motivations for using Luminoth in place of these services?
  • What are some of the highest priority features that you are focusing on implementing in Luminoth?
  • When is Luminoth the wrong choice for a computer vision application and what are some of the strongest alternatives at the moment?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Learn Leap Fly: Using Python To Promote Global Literacy with Kjell Wooding - Episode 145

Summary

Learning how to read is one of the most important steps in empowering someone to build a successful future. In developing nations, access to teachers and classrooms is not universally available so the Global Learning XPRIZE serves to incentivize the creation of technology that provides children with the tools necessary to teach themselves literacy. Kjell Wooding helped create Learn Leap Fly in order to participate in the competition and used Python and Kivy to build a platform for children to develop their reading skills in a fun and engaging environment. In this episode he discusses his experience participating in the XPRIZE competition, how he and his team built what is now Kasuku Stories, and how Python and its ecosystem helped make it possible.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • I would like to thank everyone who supports us on Patreon. Your contributions help to make the show sustainable.
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at podastinit.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your awesome app. And now you can deliver your work to your users even faster with the newly upgraded 200 GBit network in all of their datacenters.
  • If you’re tired of cobbling together your deployment pipeline then it’s time to try out GoCD, the open source continuous delivery platform built by the people at ThoughtWorks who wrote the book about it. With GoCD you get complete visibility into the life-cycle of your software from one location. To download it now go to podcatinit.com/gocd. Professional support and enterprise plugins are available for added piece of mind.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Kjell Wooding about Learn Leap Fly, a startup using Python on mobile devices to facilitate global learning

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you start by describing what Learn Leap Fly does and how the company got started?
  • What was your motivation for using Kivy as the primary technology for your mobile applications as opposed to the platform native toolkits or other multi-platform frameworks?
  • What are some of the pedagogical techniques that you have incorporated into the technological aspects of your mobile application and are there any that you were unable to translate to a purely technical implementation.
  • How do you measure the effectiveness of the work that you are doing?
  • How has the framework of the XPRIZE influenced the way in which you have approached the design and development of your work?
  • What have been some of the biggest challenges that you faced in the process of developing and deploying your submission for the XPRIZE?
  • What are some of the features that you have planned for future releases of your platform?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Orange: Visual Data Mining Toolkit with Janez Demšar and Blaž Zupan - Episode 142

Summary

Data mining and visualization are important skills to have in the modern era, regardless of your job responsibilities. In order to make it easier to learn and use these techniques and technologies Blaž Zupan and Janez Demšar, along with many others, have created Orange. In this episode they explain how they built a visual programming interface for creating data analysis and machine learning workflows to simplify the work of gaining insights from the myriad data sources that are available. They discuss the history of the project, how it is built, the challenges that they have faced, and how they plan on growing and improving it in the future.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • I would like to thank everyone who supports us on Patreon. Your contributions help to make the show sustainable.
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at podastinit.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your awesome app. And now you can deliver your work to your users even faster with the newly upgraded 200 GBit network in all of their datacenters.
  • If you’re tired of cobbling together your deployment pipeline then it’s time to try out GoCD, the open source continuous delivery platform built by the people at ThoughtWorks who wrote the book about it. With GoCD you get complete visibility into the life-cycle of your software from one location. To download it now go to podcatinit.com/gocd. Professional support and enterprise plugins are available for added piece of mind.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Blaž Zupan and Janez Demsar about Orange, a toolbox for interactive machine learning and data visualization in Python

Interview

  • Introductions
  • How did you get introduced to Python?
  • What is Orange and what was your motivation for building it?
  • Who is the target audience for this project?
  • How is the graphical interface implemented and what kinds of workflows can be implemented with the visual components?
  • What are some of the most notable or interesting widgets that are available in the catalog?
  • What are the limitations of the graphical interface and what options do user have when they reach those limits?
  • What have been some of the most challenging aspects of building and maintaining Orange?
  • What are some of the most common difficulties that you have seen when users are just getting started with data analysis and machine learning, and how does Orange help overcome those gaps in understanding?
  • What are some of the most interesting or innovative uses of Orange that you are aware of?
  • What are some of the projects or technologies that you consider to be your competition?
  • Under what circumstances would you advise against using Orange?
  • What are some widgets that you would like to see in future versions?
  • What do you have planned for future releases of Orange?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA