Machine Learning

Exploring The SpeechBrain Toolkit For Speech Processing - Episode 323

With the rising availability of computation in everyday devices, there has been a corresponding increase in the appetite for voice as the primary interface. To accomodate this desire it is necessary for us to have high quality libraries for being able to process and generate audio data that can make sense of human speech. To facilitate research and industry applications for speech data Mirco Ravanelli and Peter Plantinga are building SpeechBrain. In this episode they explain how it works under the hood, the projects that they are using it for, and how you can get started with it today.

Read More

Lightening The Load For Deep Learning With Sparse Networks Using Neural Magic - Episode 321

Deep learning has largely taken over the research and applications of artificial intelligence, with some truly impressive results. The challenge that it presents is that for reasonable speed and performance it requires specialized hardware, generally in the form of a dedicated GPU (Graphics Processing Unit). This raises the cost of the infrastructure, adds deployment complexity, and drastically increases the energy requirements for training and serving of models. To address these challenges Nir Shavit combined his experiences in multi-core computing and brain science to co-found Neural Magic where he is leading the efforts to build a set of tools that prune dense neural networks to allow them to execute on commodity CPU hardware. In this episode he explains how sparsification of deep learning models works, the potential that it unlocks for making machine learning and specialized AI more accessible, and how you can start using it today.

Read More

Traversing The Challenges And Promise Of Graph Machine Learning - Episode 319

The foundation of every ML model is the data that it is trained on. In many cases you will be working with tabular or unstructured information, but there is a growing trend toward networked, or graph data sets. Benedek Rozemberczki has focused his research and career around graph machine learning applications. In this episode he discusses the common sources of networked data, the challenges of working with graph data in machine learning projects, and describes the libraries that he has created to help him in his work. If you are dealing with connected data then this interview will provide a wealth of context and resources to improve your projects.

Read More

Exploring The Patterns And Practices For Deep Learning With Andrew Ferlitsch - Episode 317

Deep learning is gaining an immense amount of popularity due to the incredible results that it is able to offer with comparatively little effort. Because of this there are a number of engineers who are trying their hand at building machine learning models with the wealth of frameworks that are available. Andrew Ferlitsch wrote a book to capture the useful patterns and best practices for building models with deep learning to make it more approachable for newcomers ot the field. In this episode he shares his deep expertise and extensive experience in building and teaching machine learning across many companies and industries. This is an entertaining and educational conversation about how to build maintainable models across a variety of applications.

Read More

Leveling Up Natural Language Processing with Transfer Learning - Episode 315

Natural language processing is a powerful tool for extracting insights from large volumes of text. With the growth of the internet and social platforms, and the increasing number of people and communities conducting their professional and personal activities online, the opportunities for NLP to create amazing insights and experiences are endless. In order to work with such a large and growing corpus it has become necessary to move beyond purely statistical methods and embrace the capabilities of deep learning, and transfer learning in particular. In this episode Paul Azunre shares his journey into the application and implementation of transfer learning for natural language processing. This is a fascinating look at the possibilities of emerging machine learning techniques for transforming the ways that we interact with technology.

Read More

Federated Learning For All With Flower - Episode 314

Machine learning is a tool that has typically been performed on large volumes of data in one place. As more computing happens at the edge on mobile and low power devices, the learning is being federated which brings a new set of challenges. Daniel Beutel co-created the Flower framework to make federated learning more manageable. In this episode he shares his motivations for starting the project, how you can use it for your own work, and the unique challenges and benefits that this emerging model offers. This is a great exploration of the federated learning space and a framework that makes it more approachable.

Read More

Go From Notebook To Pipeline For Your Data Science Projects With Orchest - Episode 304

Jupyter notebooks are a dominant tool for data scientists, but they lack a number of conveniences for building reusable and maintainable systems. For machine learning projects in particular there is a need for being able to pivot from exploring a particular dataset or problem to integrating that solution into a larger workflow. Rick Lamers and Yannick Perrenet were tired of struggling with one-off solutions when they created the Orchest platform. In this episode they explain how Orchest allows you to turn your notebooks into executable components that are integrated into a graph of execution for running end-to-end machine learning workflows.

Read More

Giving Your Data Science Projects And Teams A Home At DagsHub - Episode 301

Collaborating on software projects is largely a solved problem, with a variety of hosted or self-managed platforms to choose from. For data science projects, collaboration is still an open question. There are a number of projects that aim to bring collaboration to data science, but they are all solving a different aspect of the problem. Dean Pleban and Guy Smoilovsky created DagsHub to give individuals and teams a place to store and version their code, data, and models. In this episode they explain how DagsHub is designed to make it easier to create and track machine learning experiments, and serve as a way to promote collaboration on open source data science projects.

Read More

Add Anomaly Detection To Your Time Series Data With Luminaire - Episode 293

When working with data it’s important to understand when it is correct. If there is a time dimension, then it can be difficult to know when variation is normal. Anomaly detection is a useful tool to address these challenges, but a difficult one to do well. In this episode Smit Shah and Sayan Chakraborty share the work they have done on Luminaire to make anomaly detection easier to work with. They explain the complexities inherent to working with time series data, the strategies that they have incorporated into Luminaire, and how they are using it in their data pipelines to identify errors early. If you are working with any kind of time series then it’s worth giving Luminaure a look.

Read More

Scale Your Data Science Teams With Machine Learning Operations Principles - Episode 289

Building a machine learning model is a process that requires well curated and cleaned data and a lot of experimentation. Doing it repeatably and at scale with a team requires a way to share your discoveries with your teammates. This has led to a new set of operational ML platforms. In this episode Michael Del Balso shares the lessons that he learned from building the platform at Uber for putting machine learning into production. He also explains how the feature store is becoming the core abstraction for data teams to collaborate on building machine learning models. If you are struggling to get your models into production, or scale your data science throughput, then this interview is worth a listen.

Read More