Machine Learning

Orange: Visual Data Mining Toolkit with Janez Demšar and Blaž Zupan - Episode 142

Summary

Data mining and visualization are important skills to have in the modern era, regardless of your job responsibilities. In order to make it easier to learn and use these techniques and technologies Blaž Zupan and Janez Demšar, along with many others, have created Orange. In this episode they explain how they built a visual programming interface for creating data analysis and machine learning workflows to simplify the work of gaining insights from the myriad data sources that are available. They discuss the history of the project, how it is built, the challenges that they have faced, and how they plan on growing and improving it in the future.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • I would like to thank everyone who supports us on Patreon. Your contributions help to make the show sustainable.
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at podastinit.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your awesome app. And now you can deliver your work to your users even faster with the newly upgraded 200 GBit network in all of their datacenters.
  • If you’re tired of cobbling together your deployment pipeline then it’s time to try out GoCD, the open source continuous delivery platform built by the people at ThoughtWorks who wrote the book about it. With GoCD you get complete visibility into the life-cycle of your software from one location. To download it now go to podcatinit.com/gocd. Professional support and enterprise plugins are available for added piece of mind.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Blaž Zupan and Janez Demsar about Orange, a toolbox for interactive machine learning and data visualization in Python

Interview

  • Introductions
  • How did you get introduced to Python?
  • What is Orange and what was your motivation for building it?
  • Who is the target audience for this project?
  • How is the graphical interface implemented and what kinds of workflows can be implemented with the visual components?
  • What are some of the most notable or interesting widgets that are available in the catalog?
  • What are the limitations of the graphical interface and what options do user have when they reach those limits?
  • What have been some of the most challenging aspects of building and maintaining Orange?
  • What are some of the most common difficulties that you have seen when users are just getting started with data analysis and machine learning, and how does Orange help overcome those gaps in understanding?
  • What are some of the most interesting or innovative uses of Orange that you are aware of?
  • What are some of the projects or technologies that you consider to be your competition?
  • Under what circumstances would you advise against using Orange?
  • What are some widgets that you would like to see in future versions?
  • What do you have planned for future releases of Orange?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Surprise! Recommendation Algorithms with Nicolas Hug - Episode 135

Summary

A relevant and timely recommendation can be a pleasant surprise that will delight your users. Unfortunately it can be difficult to build a system that will produce useful suggestions, which is why this week’s guest, Nicolas Hug, built a library to help with developing and testing collaborative recommendation algorithms. He explains how he took the code he wrote for his PhD thesis and cleaned it up to release as an open source library and his plans for future development on it.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • I would like to thank everyone who supports us on Patreon. Your contributions help to make the show sustainable.
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at podastinit.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your awesome app. And now you can deliver your work to your users even faster with the newly upgraded 200 GBit network in all of their datacenters.
  • If you’re tired of cobbling together your deployment pipeline then it’s time to try out GoCD, the open source continuous delivery platform built by the people at ThoughtWorks who wrote the book about it. With GoCD you get complete visibility into the life-cycle of your software from one location. To download it now go to podcatinit.com/gocd. Professional support and enterprise plugins are available for added piece of mind.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Nicolas Hug about Surprise, a scikit library for building recommender systems

Interview

  • Introductions
  • How did you get introduced to Python?
  • What is Surprise and what was your motivation for creating it?
  • What are the most challenging aspects of building a recommender system and how does Surprise help simplify that process?
  • What are some of the ways that a user or company can bootstrap a recommender system while they accrue data to use a collaborative algorithm?
  • What are some of the ways that a recommender system can be used, outside of the typical ecommerce example?
  • Once an algorithm has been deployed how can a user test the accuracy of the suggestions?
  • How is Surprise implemented and how has it evolved since you first started working on it?
  • What have been the most difficult aspects of building and maintaining Surprise?
  • competitors?
  • What are the attributes of the system that can be modified to improve the relevance of the recommendations that are provided?
  • For someone who wants to use Surprise in their application, what are the steps involved?
  • What are some of the new features or improvements that you have planned for the future of Surprise?

Keep In Touch

Picks

  • Tobias
    • Silk profiler for Django

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Rasa: Build Your Own AI Chatbot with Joey Faulkner - Episode 134

Summary

With the proliferation of messaging applications, there has been a growing demand for bots that can understand our wishes and perform our bidding. The rise of artificial intelligence has brought the capacity for understanding human language. Combining these two trends gives us chatbots that can be used as a new interface to the software and services that we depend on. This week Joey Faulkner shares his work with Rasa Technologies and their open sourced libraries for understanding natural language and how to conduct a conversation. We talked about how the Rasa Core and Rasa NLU libraries work and how you can use them to replace your dependence on API services and own your data.

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • I would like to thank everyone who supports us on Patreon. Your contributions help to make the show sustainable.
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at podastinit.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your awesome app. And now you can deliver your work to your users even faster with the newly upgraded 200 GBit network in all of their datacenters.
  • If you’re tired of cobbling together your deployment pipeline then it’s time to try out GoCD, the open source continuous delivery platform built by the people at ThoughtWorks who wrote the book about it. With GoCD you get complete visibility into the life-cycle of your software from one location. To download it now go to podcatinit.com/gocd. Professional support and enterprise plugins are available for added piece of mind.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Joey Faulkner about Rasa Core and Rasa NLU for adding conversational AI to your projects.

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you start by explaining the goals of Rasa as a company and highlighting the projects that you have open sourced?
  • What are the differences between the Rasa Core and Rasa NLU libraries and how do they relate to each other?
  • How does the interaction model change when going from state machine driven bots to those which use Rasa Core and what capabilities does it unlock?
  • How is Rasa NLU implemented and how has the design evolved?
  • What are the motivations for someone to use Rasa core or NLU as a library instead of available API services such as wit.ai, LUIS, or Dialogflow?
  • What are some of the biggest challenges in gathering and curating useful training data?
  • What is involved in supporting multiple languages for an application using Rasa?
  • What are the biggest challenges that you face, past, present, and future, building and growing the tools and platform for Rasa?
  • What would be involved for projects such as OpsDroid, Kalliope, or Mycroft to take advantage of Rasa and what benefit would that provide?
  • On the comparison page for the hosted Rasa platform it mentions a feature of collaborative model training, can you describe how that works and why someone might want to take advantage of it?
  • What are some of the most interesting or unexpected uses of the Rasa tools that you have seen?
  • What do you have planned for the future of Rasa?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Donkey: Building Self Driving Cars with Will Roscoe - Episode 132

Summary

Do you wish that you had a self-driving car of your own? With Donkey you can make that dream a reality. This week Will Roscoe shares the story of how he got involved in the arena of self-driving car hobbyists and ended up building a Python library to act as his pilot. We talked about the hardware involved, how he has evolved the code to meet unexpected challenges, and how he plans to improve it in the future. So go build your own self driving car and take it for a spin!

Preface

  • Hello and welcome to Podcast.__init__, the podcast about Python and the people who make it great.
  • I would like to thank everyone who supports us on Patreon. Your contributions help to make the show sustainable.
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at podastinit.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your awesome app. And now you can deliver your work to your users even faster with the newly upgraded 200 GBit network in all of their datacenters.
  • If you’re tired of cobbling together your deployment pipeline then it’s time to try out GoCD, the open source continuous delivery platform built by the people at ThoughtWorks who wrote the book about it. With GoCD you get complete visibility into the life-cycle of your software from one location. To download it now go to podcatinit.com/gocd. Professional support and enterprise plugins are available for added piece of mind.
  • Visit the site to subscribe to the show, sign up for the newsletter, and read the show notes. And if you have any questions, comments, or suggestions I would love to hear them. You can reach me on Twitter at @Podcast__init__ or email [email protected])
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Your host as usual is Tobias Macey and today I’m interviewing Will Roscoe about Donkey, a python library for building DIY self driving cars.

Interview

  • Introductions
  • How did you get introduced to Python?
  • What is Donkey and what was your reason for creating it?
    • What is the story behind the name?
  • What was your reason for choosing Python as the language for implementing Donkey and if you were to start over today would you make the same choice?
  • How is Donkey implemented and how has its software architecture evolved?
  • Is the library built in a way that you can process inputs from additional sensor types, such as proximity detectors or LIDAR?
  • For training the autopilot what are the input features that the model is testing against for the input data, and is it possible to change the features that it will try to detect?
  • Do you have plans to incorporate any negative reinforcement techniques for training the pilot models so that errors in data collection can be identified as undesirable outcomes?
  • What have been some of the most interesting or humorous successes and failures while testing your cars?
  • What are some of the challenges involved with getting such a sophisticated stack of software running on a Raspberry Pi?
  • What are some of the improvements or new features that you have planned for the future of Donkey?

Media

Donkey Car Photos

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA