Open Source

Automatically Enforce Software Structures With Powerful Code Modifications Powered By LibCST - Episode 361

Programmers love to automate tedious processes, including refactoring your code. In order to support the creation of code modifications for your Python projects Jimmy Lai created LibCST. It provides a richly typed and high level API for creating and manipulating concrete syntax trees of your source code. In this episode Jimmy Lai and Zsolt Dollenstein explain how it works, some of the linting and automatic code modification utilities that you can build with it and how to get started with using it to maintain your own Python projects.

Read More

Cloud Native Networking For Developers With The Gloo Platform - Episode 360

Communication is a fundamental requirement for any program or application. As the friction involved in deploying code has gone down, the motivation for architecting your system as microservices goes up. This shifts the communication patterns in your software from function calls to network calls. In this episode Idit Levine explains how the Gloo platform that she and her team at Solo have created makes it easier for you to configure and monitor the network topologies for your microservice environments. She also discusses what developers need to know about networking in cloud native environments and how a combination of API gateways and service mesh technologies allow you to more rapidly iterate on your systems.

Read More

Accelerate And Simplify Cloud Native Development For Kubernetes Environments With Gefyra - Episode 359

Cloud native architectures have been gaining prominence for the past few years due to the rising popularity of Kubernetes. This introduces new complications to development workflows due to the need to integrate with multiple services as you build new components for your production systems. In order to reduce the friction involved in developing applications for cloud native environments Michael Schilonka created Gefyra. In this episode he explains how it connects your local machine to a running Kubernetes environment so that you can rapidly iterate on your software in the context of the whole system. He also shares how the Django Hurricane plugin lets your applications work closely with the Kubernetes process model.

Read More

Building A Community And Technology Stack For Scalable Big Data Geoscience At Pangeo - Episode 358

Science is founded on the collection and analysis of data. For disciplines that rely on data about the earth the ability to simulate and generate that data has been growing faster than the tools for analysis of that data can keep up with. In order to help scale that capacity for everyone working in geosciences the Pangeo project compiled a reference stack that combines powerful tools into an out-of-the-box solution for researchers to be productive in short order. In this episode Ryan Abernathy and Joe Hamman explain what the Pangeo project really is, how they have integrated a combination of XArray, Dask, and Jupyter to power these analytical workflows, and how it has helped to accelerate research on multidimensional geospatial datasets.

Read More

Run Your Applications Reliably On Kubernetes Without Losing Sleep With Robusta - Episode 356

Kubernetes is a framework that aims to simplify the work of running applications in production, but it forces you to adopt new patterns for debugging and resolving issues in your systems. Robusta is aimed at making that a more pleasant experience for developers and operators through pre-built automations, easy debugging, and a simple means of creating your own event-based workflows to find, fix, and alert on errors in production. In this episode Natan Yellin explains how the project got started, how it is architected and tested, and how you can start using it today to keep your Python projects running reliably.

Read More

Accelerate The Development And Delivery Of Your Machine Learning Applications Using Ray And Deploy It At Anyscale - Episode 355

Building a machine learning application is inherently complex. Once it becomes necessary to scale the operation or training of the model, or introduce online re-training the process becomes even more challenging. In order to reduce the operational burden of AI developers Robert Nishihara helped to create the Ray framework that handles the distributed computing aspects of machine learning operations. To support the ongoing development and simplify adoption of Ray he co-founded Anyscale. In this episode he re-joins the show to share how the project, its community, and the ecosystem around it have grown and evolved over the intervening two years. He also explains how the techniques and adoption of machine learning have influenced the direction of the project.

Read More

See The Structure Of Your Software At A Glance With Call Graphs From Code2Flow - Episode 354

As software projects grow and change it can become difficult to keep track of all of the logical flows. By visualizing the interconnections of function definitions, classes, and their invocations you can speed up the time to comprehension for newcomers to a project, or help yourself remember what you worked on last month. In this episode Scott Rogowski shares his work on Code2Flow as a way to generate a call graph of your programs. He explains how it got started, how it works, and how you can start using it to understand your Python, Ruby, and PHP projects.

Read More

Scaling Knowledge Management For Technical Teams With Knowledge Repo - Episode 353

One of the most persistent challenges faced by organizations of all sizes is the recording and distribution of institutional knowledge. In technical teams this is exacerbated by the need to incorporate technical review feedback and manage access to data before publishing. When faced with this problem as an early data scientist at AirBnB, Chetan Sharma helped create the Knowledge Repo project as a solution. In this episode he shares the story behind its creation and growth, how and why it was released as open source, and the features that make it a compelling option for your own team’s knowledge management journey.

Read More

Simplify And Scale Your Software Development Cycles By Putting On Pants (Build Tool) - Episode 352

Software development is a complex undertaking due to the number of options available and choices to be made in every stage of the lifecycle. In order to make it more scaleable it is necessary to establish common practices and patterns and introduce strong opinions. One area that can have a huge impact on the productivity of the engineers engaged with a project is the tooling used for building, validating, and deploying changes introduced to the software. In this episode maintainers of the Pants build tool Eric Arellano, Stu Hood, and Andreas Stenius discuss the recent updates that add support for more languages, efforts made to simplify its adoption, and the growth of the community that uses it. They also explore how using Pants as the single entry point for all of your routine tasks allows you to spend your time on the decisions that matter.

Read More

Achieve Repeatable Builds Of Your Software On Any Machine With Earthly - Episode 351

It doesn’t matter how amazing your application is if you are unable to deliver it to your users. Frustrated with the rampant complexity involved in building and deploying software Vlad A. Ionescu created the Earthly tool to reduce the toil involved in creating repeatable software builds. In this episode he explains the complexities that are inherent to building software projects and how he designed the syntax and structure of Earthly to make it easy to adopt for developers across all language environments. By adopting Earthly you can use the same techniques for building on your laptop and in your CI/CD pipelines.

Read More