Open Source

Making Orbital Mechanics More Accessible With Poliastro - Episode 342

Outer space holds a deep fascination for people of all ages, and the key principle in its exploration both near and far is orbital mechanics. Poliastro is a pure Python package for exploring and simulating orbit calculations. In this episode Juan Luis Cano Rodriguez shares the story behind the project, how you can use it to learn more about space travel, and some of the interesting projects that have used it for planning planetary and interplanetary missions.

Read More

Declarative Deep Learning From Your Laptop To Production With Ludwig and Horovod - Episode 341

Deep learning frameworks encourage you to focus on the structure of your model ahead of the data that you are working with. Ludwig is a tool that uses a data oriented approach to building and training deep learning models so that you can experiment faster based on the information that you actually have, rather than spending all of our time manipulating features to make them match your inputs. In this episode Travis Addair explains how Ludwig is designed to improve the adoption of deep learning for more companies and a wider range of users. He also explains how the Horovod framework plugs in easily to allow for scaling your training workflow from your laptop out to a massive cluster of servers and GPUs. The combination of these tools allows for a declarative workflow that starts off easy but gives you full control over the end result.

Read More

Build Composable And Reusable Feature Engineering Pipelines with Feature-Engine - Episode 338

Every machine learning model has to start with feature engineering. This is the process of combining input variables into a more meaningful signal for the problem that you are trying to solve. Many times this process can lead to duplicating code from previous projects, or introducing technical debt in the form of poorly maintained feature pipelines. In order to make the practice more manageable Soledad Galli created the feature-engine library. In this episode she explains how it has helped her and others build reusable transformations that can be applied in a composable manner with your scikit-learn projects. She also discusses the importance of understanding the data that you are working with and the domain in which your model will be used to ensure that you are selecting the right features.

Read More

Build Better Machine Learning Models By Understanding Their Decisions With SHAP - Episode 335

Machine learning and deep learning techniques are powerful tools for a large and growing number of applications. Unfortunately, it is difficult or impossible to understand the reasons for the answers that they give to the questions they are asked. In order to help shine some light on what information is being used to provide the outputs to your machine learning models Scott Lundberg created the SHAP project. In this episode he explains how it can be used to provide insight into which features are most impactful when generating an output, and how that insight can be applied to make more useful and informed design choices. This is a fascinating and important subject and this episode is an excellent exploration of how to start addressing the challenge of explainability.

Read More

Accelerating Drug Discovery Using Machine Learning With TorchDrug - Episode 334

Finding new and effective treatments for disease is a complex and time consuming endeavor, requiring a high degree of domain knowledge and specialized equipment. Combining his expertise in machine learning and graph algorithms with is interest in drug discovery Jian Tang created the TorchDrug project to help reduce the amount of time needed to find new candidate molecules for testing. In this episode he explains how the project is being used by machine learning researchers and biochemists to collaborate on finding effective treatments for real-world diseases.

Read More

Experimenting With Reinforcement Learning Using MushroomRL - Episode 332

Reinforcement learning is a branch of machine learning and AI that has a lot of promise for applications that need to evolve with changes to their inputs. To support the research happening in the field, including applications for robotics, Carlo D’Eramo and Davide Tateo created MushroomRL. In this episode they share how they have designed the project to be easy to work with, so that students can use it in their study, as well as extensible so that it can be used by businesses and industry professionals. They also discuss the strengths of reinforcement learning, how to design problems that can leverage its capabilities, and how to get started with MushroomRL for your own work.

Read More

Doing Dask Powered Data Science In The Saturn Cloud - Episode 331

A perennial problem of doing data science is that it works great on your laptop, until it doesn’t. Another problem is being able to recreate your environment to collaborate on a problem with colleagues. Saturn Cloud aims to help with both of those problems by providing an easy to use platform for creating reproducible environments that you can use to build data science workflows and scale them easily with a managed Dask service. In this episode Julia Signall, head of open source at Saturn Cloud, explains how she is working with the product team and PyData community to reduce the points of friction that data scientists encounter as they are getting their work done.

Read More

Monitor The Health Of Your Machine Learning Products In Production With Evidently - Episode 330

You’ve got a machine learning model trained and running in production, but that’s only half of the battle. Are you certain that it is still serving the predictions that you tested? Are the inputs within the range of tolerance that you designed? Monitoring machine learning products is an essential step of the story so that you know when it needs to be retrained against new data, or parameters need to be adjusted. In this episode Emeli Dral shares the work that she and her team at Evidently are doing to build an open source system for tracking and alerting on the health of your ML products in production. She discusses the ways that model drift can occur, the types of metrics that you need to track, and what to do when the health of your system is suffering. This is an important and complex aspect of the machine learning lifecycle, so give it a listen and then try out Evidently for your own projects.

Read More

Making Automated Machine Learning More Accessible With EvalML - Episode 329

Building a machine learning model is a process that requires a lot of iteration and trial and error. For certain classes of problem a large portion of the searching and tuning can be automated. This allows data scientists to focus their time on more complex or valuable projects, as well as opening the door for non-specialists to experiment with machine learning. Frustrated with some of the awkward or difficult to use tools for AutoML, Angela Lin and Jeremy Shih helped to create the EvalML framework. In this episode they share the use cases for automated machine learning, how they have designed the EvalML project to be approachable, and how you can use it for building and training your own models.

Read More

Growing And Supporting The Data Science Community At Anaconda - Episode 328

Data scientists are tasked with answering challenging questions using data that is often messy and incomplete. Anaconda is on a mission to make the lives of data professionals more manageable through creation and maintenance of high quality libraries and frameworks, the distribution of an easy to use Python distribution and package ecosystem, and high quality training material. In this episode Kevin Goldsmith, CTO of Anaconda, discusses the technical and social challenges faced by data scientists, the ways that the Python ecosystem has evolved to help address those difficulties, and how Anaconda is engaging with the community to provide high quality tools and education for this constantly changing practice.

Read More