An Exploration Of Financial Exchange Risk Management Strategies - Episode 336

The world of finance has driven the development of many sophisticated techniques for data analysis. In this episode Paul Stafford shares his experiences working in the realm of risk management for financial exchanges. He discusses the types of risk that are involved, the statistical methods that he has found most useful for identifying strategies to mitigate that risk, and the software libraries that have helped him most in his work.

Play Episode

Build Better Machine Learning Models By Understanding Their Decisions With SHAP - Episode 335

Machine learning and deep learning techniques are powerful tools for a large and growing number of applications. Unfortunately, it is difficult or impossible to understand the reasons for the answers that they give to the questions they are asked. In order to help shine some light on what information is being used to provide the outputs to your machine learning models Scott Lundberg created the SHAP project. In this episode he explains how it can be used to provide insight into which features are most impactful when generating an output, and how that insight can be applied to make more useful and informed design choices. This is a fascinating and important subject and this episode is an excellent exploration...

Play Episode

Accelerating Drug Discovery Using Machine Learning With TorchDrug - Episode 334

Finding new and effective treatments for disease is a complex and time consuming endeavor, requiring a high degree of domain knowledge and specialized equipment. Combining his expertise in machine learning and graph algorithms with is interest in drug discovery Jian Tang created the TorchDrug project to help reduce the amount of time needed to find new candidate molecules for testing. In this episode he explains how the project is being used by machine learning researchers and biochemists to collaborate on finding effective treatments for real-world diseases.

Play Episode

An Exploration Of Automated Speech Recognition - Episode 333

The overwhelming growth of smartphones, smart speakers, and spoken word content has corresponded with increasingly sophisticated machine learning models for recognizing speech content in audio data. Dylan Fox founded Assembly to provide access to the most advanced automated speech recognition models for developers to incorporate into their own products. In this episode he gives an overview of the current state of the art for automated speech recognition, the varying requirements for accuracy and speed of models depending on the context in which they are used, and what is required to build a special purpose model for your own ASR applications.

Play Episode

Experimenting With Reinforcement Learning Using MushroomRL - Episode 332

Reinforcement learning is a branch of machine learning and AI that has a lot of promise for applications that need to evolve with changes to their inputs. To support the research happening in the field, including applications for robotics, Carlo D'Eramo and Davide Tateo created MushroomRL. In this episode they share how they have designed the project to be easy to work with, so that students can use it in their study, as well as extensible so that it can be used by businesses and industry professionals. They also discuss the strengths of reinforcement learning, how to design problems that can leverage its capabilities, and how to get started with MushroomRL for your own work.

Play Episode

Join The Mailing List